Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a multiwavelength analysis of 29 merging galaxy clusters that exhibit radio relics. For each merging system, we perform a weak-lensing analysis on Subaru optical imaging. We generate high-resolution mass maps of the dark matter distributions, which are critical for discerning the merging constituents. Combining the weak-lensing detections with X-ray emission, radio emission, and galaxy redshifts, we discuss the formation of radio relics from the past collision. For each cluster, we obtain mass estimates by fitting a multicomponent Navarro–Frenk–White model with and without a concentration–mass relation. We compare the mass estimates of each subcluster to their velocity dispersion measurements and find that they preferentially lie below the expected velocity dispersion scaling relation, especially at the low-mass end (∼1014M⊙). We show that the majority of the clusters that exhibit radio relics are in major mergers with a mass ratio below 1:4. We investigate the position of the mass peak relative to the galaxy luminosity peak, number density peak, and brightest cluster galaxy (BCG) locations and find that the BCG tends to better trace the mass peak position. Finally, we update a golden sample of eight galaxy clusters that have the simplest geometries and can provide the cleanest picture of the past merger, which we recommend for further investigation to constrain the nature of dark matter and the acceleration process that leads to radio relics.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Aims.We present a method for refining photometric redshift galaxy catalogs based on a comparison of their color-space matching with overlapping spectroscopic calibration data. We focus on cases where photometric redshifts (photo-z) are estimated empirically. Identifying galaxies that are poorly represented in spectroscopic data is crucial, as their photo-zmay be unreliable due to extrapolation beyond the training sample. Methods.Our approach uses a self-organizing map (SOM) to project a multidimensional parameter space of magnitudes and colors onto a 2D manifold, allowing us to analyze the resulting patterns as a function of various galaxy properties. Using SOM, we compared the Kilo-Degree Survey’s bright galaxy sample (KiDS-Bright), limited tor < 20 mag, with various spectroscopic samples, including the Galaxy And Mass Assembly (GAMA). Results.Our analysis reveals that GAMA tends to underrepresent KiDS-Bright at its faintest (r ≳ 19.5) and highest-redshift (z ≳ 0.4) ranges; however, no strong trends are seen in terms of color or stellar mass. By incorporating additional spectroscopic data from the SDSS, 2dF, and early DESI, we identified SOM cells where the photo-zvalues are estimated suboptimally. We derived a set of SOM-based criteria to refine the photometric sample and improve photo-zstatistics. For the KiDS-Bright sample, this improvement is modest, namely, it excludes the least represented 20% of the sample reduces photo-zscatter by less than 10%. Conclusions.We conclude that GAMA, used for KiDS-Bright photo-ztraining, is sufficiently representative for reliable redshift estimation across most of the color space. Future spectroscopic data from surveys such as DESI should be better suited for exploiting the full improvement potential of our method.more » « less
An official website of the United States government
